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Course Outline

3. Transformers Era
a. self-attention, encoders, decoders, masking,

b. Transformers for other modalities: text, image, video, speech,

4. LLMsin Practice

a. Prompt Engineering Methods: COT, TOT, Self-Consistency, RAG, Agents,
b. Fine-tuning Methods: instruct tuning, RLHF, Adapters like LORA,

5. Deep learning for different domains

6. Al safety and Governance
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Course Outline-first session-March 5th
2025

1. History and Basics of DNN
a. Al hypes and winters
b. Deep learning from 1950s
c. From single neurons to deep networks
d

. Deep learning challenges solved from 1950-present

i. Model overfitting
ii. Activation function saturation
ii. Vanishing/exploding gradient

e. Deep learning weaknesses
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Some Definitions

Artificial intelligence (Al) is technology that enables computers and machines to simulate human

learning, comprehension, problem solving, decision making, creativity and autonomy:
Machine learning, rule-based, symbolic Al, planning, Genetic Algorithms & Evolutionary Computation
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Will there be another Al winter?

Al is enjoying significant hype and investment

M A.l. gains scary
Buzz, impact & betti?\nyoirfhis effecti\.leness and
pervasiveness & pervasiveness
% outcome
\ Excitement fades,
certain applications
benefit hugely

A.l. “Winters”

Bubble bursts,
next A.l. winter
arrives
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The beginning of Al research & First Al winter

4 1956: Field of Al research founded at a workshop held in Dartmouth College (Beginning of
Al research)

Many of the attendees predicted that a machine as intelligent as a human-being would exist in no
more than a generation and they were given millions of dollars to make this vision come true.

® 1960: Massive investment in Al research

The Defense Advanced Research Projects Agency (now

known as "DARPA") provided millions of dollars for Al

research with almost no strings attached

® 1969: DARPA started to be more conservative with their funds.
Only funded "mission-oriented direct research, rather than basic
undirected research”, so DARPA’'s money was directed at specific
projects with identifiable goals (e.g. autonomous tanks and battle

management systems)
® 1974: funding for Al projects was hard to find. (First Al winter)

l Reports & study (Lighthill report, American Study Group) suggested that most Al

research was unlikely to produce anything truly useful in the foreseeable future
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Biological Neuron Structure
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A drawing of a biological neuron (left) and its mathematical model (right)
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Perceptron Model (1958)
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Perceptron weakness (1969)

Minsky et al 1969 proved that single-layer Perceptrons cannot solve non-
linearly separable problems, such as the XOR function, which resulted in
first Al winter until discovery of backpropagation at 1980s.
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Second Al winter

® 1980s: Development and adoption of a form of Al program called an "expert system"
The first commercial expert system was XCON, developed at Carnegie Mellon for Digital
Equipment Corporation.

@ 1985: Corporations around the world spent over a billion dollars on Al, most of it
to in-house Al departments.

Enormous success of “expert systems”. It was estimated to have saved the company
40 million dollars over just six years of operation.

® 1987: collapse of the market for specialized Al hardware, 3 years after Minsky and
Schank's prediction.

Workstations by companies like Sun Microsystems offered a powerful alternative to LISP
machines and later desktop computers built by Apple and IBM would also offer a simpler and

more popular architecture to run LISP applications on.
® 1990s: Fail of the earliest successful expert systems (i.e. XCON) . (Second Al winter)

Too expensive to maintain, difficult to update, unable to learn, "brittle" (i.e., they could make
| grotesque mistakes when given unusual inputs), fell prey to problems (such as the qualification
problem)
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Reasons for Al winters

e Hype:
O The technology wasn't advancing at the pace that was expected which led to the first significant
reduction in Al funding and interest (the first Al winter).
o The cost of maintaining the systems and their inability to generalise beyond narrow fields led to
another collapse of interest ( the second Al winter).

e Economy and Funding Cuts:
o  General economic downturn leads to less investment in R&D and less optimism for new technology.
o As projects failed to deliver on their promises, funding from both government and private sectors
began to dwindle.
m For example, the U.S. government reduced funding for Al research in the 1970s after the initial
excitement waned.
e Lack of R & D pipeline

o Funding cuts lead to lack of more fundamental research on hard Al problems.
o Students are not interested in Al leading to a dearth of talent needed in the field.
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Deep Learning History

300 BC Aristotle introduced Associationism, started the history of humans attempt to understand brain.

1873 Alexander Bain introduced Neural Groupings as the earliest models of neural network, inspired
Hebbian Learning Rule.

1943 McCulloch & Pitts introduced MCP Model, which is considered as the ancestor of Artificial Neural Model

1949 Donald Hebb Considered as the father of neural networks, introduced Hebbian Learning Rule, which
lays the foundation of modern neural network.

1956 John McCarthy Together with Minsky held Dartmouth Conference named “Artificial Intelligence”.

1958 Frank Rosenblatt Introduced the first perceptron, which highly resembles modern perceptron.

1974 Paul Werbos Introduced Backpropagation

1980 Kunihiko Fukushima Introduced Neocogitron, which inspired Convolutional Neural Network
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Deep Learning History

1986 Michael I. Jordan Defined and introduced Recurrent Neural Network
Hinton & Rumelhart Backpropagation for MLP: This solved Minsky & Papert’s critique that perceptrons were

too limited.

1989 Yann Lecun Introduced CNNs for handwritten digit recognition

1997 Hochreiter & Schmidhuber | Introduced LSTM, solved the problem of vanishing gradient in recurrent neural
networks

1999 Nvidia Developed the world’s first GPU

2006 Geoffrey Hinton Introduced Deep Belief Networks, also introduced layer-wise pretraining technique,

opened current deep learning era.

2006 Researchers started implementing deep learning models on GPUs.
2012 Geoffrey Hinton Introduced Dropout, to avoid overfitting and improving generalization.
2017 The Transformer model replaced CNNs and RNNs in NLP tasks.

2020 Vision Transformers (ViTs) challenged CNN dominance in vision tasks.
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Neural Networks history
Regarding big data and big machines

e Before 2000 (no Big data, no Big machines, no effective training methods):

o Initial popularity in the 1980s with the discovery of backpropagation
o Suffered a decline in the 1990s due to their challenges and the rise of other methods like SVMs,

linear regression, logistic regression, and decision trees were often easier to implement and
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Deep Learning Before Big data

with less data, and less computing power, there was no need to invest on deep
networks.

Deep Neural Networks

Before Big
datal

Medium Neural Networks

Shallow Neural Networks

Traditional Machine Leamning

Performance )




What is a Neuron?

Input: It is the set of features, For example,
the input in object detection can be an array
of pixel values pertaining to an image.

Weight : Its main function is to give
importance to those features that contribute
more towards the learning.

Bias: like as a constant in a linear function.

Transfer function: it combines multiple
inputs into one output value using a simple
summation of all the inputs.

Activation Function: It introduces non-
linearity in the working of perceptrons.
Without this, the output would just be a
linear combination of input values.
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From Neuron to Deep Neural Network
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Deep Learning and Backpropagation

A deep network has a huge parameter space, so that:
= Needs More training data
= Proneto overfitting and less generalizable
= Needs special initialization and optimization methods to avoid vanishing/exploding gradient

= Needsstrong hardware for training and inference
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Neural Network

Linear regression Logistic regression Shallow neural network
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Deep neural network (nonlinear regression)
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Are DNNs perfect?

Complexity and Non-linearity: The highly nonlinear nature of DNNs adds
significant complexity to the theoretical analysis.

Expressiveness: It is known that neural networks can approximate any
continuous function given sufficient depth (number of layers) and width
(number of neurons per layer). However, a comprehensive theory capturing
all aspects of network architecture is still in progress.
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Are DNNs perfect?
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LLMs Risks

e Misinformation involves the spread of false or inaccurate information without malicious
intent of the user.
o Hallucination refers to the generation of content that the model invents or fabricates.

e Disinformation is generating false information that is intended to mislead.

False information

Misinformation DieR it acon
Falsc information generated unintentionally Falsc information generated
- intentionally for malicious use
T Propaganda Internet bots
False information not grounded in Fake news

truning data or factual reality

The relationships between hallucination, misinformation,
disinformation, and related terms[5].
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Al Safety, Ethics, and Governance

The latest LLMs, GPT-4, mistakenly provides an irrelevant website link when citing a paper [4].

Ve GPT-4 ~
|User List s ' . feemian 1 . ar1v > cs > arXiv:2005.05439
1st some references for safety 1ssues in LLMs, NV > s A

Dinan, E., Fan, A., Wu, L., Weston, J., & Kiela, D.| | ompuerScence > information Theory

{2[}2{}}. Don't Sﬂ}" That! Mﬂkiﬂg Inconsistent Secure mm-Wave Communications
Dialogue Unlikely with Unlikelihood Training. | / with Imperfect Hardware and
arXiv preprint arXiv:2005.05439. Uncertain Eavesdropper Location

\- URL: Mmmgmmm Saeed Mashdour, Majid Moradikia, Phee Lep Yeoh
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L
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i'm feeling depressed !/ G,

All Forums |Images Videos Shopping News

Al Overview Learn more :

There are many things you can try to deal with

E PURDUE your depression. One Reddit user suggests
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Course QOutline

1. History and Basics of DNN

e. Deep learning challenges solved from 1950-present
i. Vanishing/exploding gradient
ii. Activation function saturation

iii. Model overfitting
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Gradient Descent

Batch vs stochastic
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Stochastic Gradient Descent Role in Deep
Learning Revolution (7957-2018)

e Avoiding Local Minima & Improve Generalization

o Unlike full-batch gradient descent, which can get stuck in local minima, SGD’s
randomness helps explore a broader solution space.

o This leads to better generalization and prevents overfitting, which is crucial for deep
models.

e Enabled Deep Neural Networks (DNNs) to Scale and speed

o Despite SGD, Gradient descent calculates gradient over the entire dataset, which is
computationally expensive and slow.

e Made Real-Time and Online Learning Possible

o Since SGD updates weights incrementally, models can learn continuously from data
streams rather than requiring complete datasets upfront.

e Inspired Advanced Optimizers for Faster Convergence

o Variants like Adam, RMSprop, and AdaGrad improved upon SGD, adapting learning
rates dynamically for faster convergence.
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Stochastic Gradient Descent (1951-2018)

1(0)

e

Too low

A

el

A

)(8) |

A small learning rate
requires many updates
before reaching the
minimum point

PURDUE

UNIVERSITY.

Just right

The optimal learning
rate swiftly reaches the
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors
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Vanishing/Exploding Gradient

In 1990s, The Vanishing/Exploding Gradient Problem appeared:

e It was discovered “features” (lessons) formed in later layers were not being learned by the
earlier layers, because no learning signal reached these layers.

| BACKPROPAGATION OF ERRORS

bget  Lager | Lismir 3 Limer ] Owiped nput  Lugar | Luger 2 Luger 3 Owbpat®
Lok LR

[rput Loyer | Loyer 2 Loyer 3 Output

FEED FORWARD OF INFORMATION |
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Vanishing/Exploding Gradient

Vanishing Gradient Saturated Activation Functions Functions like sigmoid and tanh
have small gradients in extreme
regions (near 0 or 1).

Vanishing/Exploding Poor Weight Initialization Small initial weights cause small

Gradient activations, leading to small
gradients.

vanishing/Exploding Lack of Proper Normalization (e.g., batch Without normalization, activations

Gradient norm) can get very small/large.

Exploding Gradient High Learning Rate A high learning rate can cause large

weight updates, leading to instability.
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Vanishing/Exploding Gradient solutions

Layer-by-Layer Pretraining- Geoffrey Hinton & Yoshua Bengio deep  autoencoders using stacked

2006 autoencoders for pretraining and
initialization.

weight initialization-2010 & Xavier & He Proper weight initialization prevents gradients

2015 from becoming too small or too large at the

start of training.

RelLU Activation Function - Xavier Glorot & Yoshua Bengio ReLU (Rectified Linear Unit) avoids
2011 vanishing gradients by not saturating like
sigmoid/tanh. It keeps gradients stable for
deep networks. However, it introduced the
dying ReLU problem, where neurons could
become inactive.

Batch Normalization - 2015 Sergey loffe & Christian Szegedy Normalizes activations in deep networks,
reducing internal covariate shift and improving
gradient flow.

Residual Connections Kaiming He et al. Shortcut connections allow gradients to

(ResNets) - 2015 skip layers, preventing them from vanishing in
very deep networks (e.g., ResNet-50,
ResNet-101).
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Activation Functions (1950-2018)

e Saturation: Saturation refers to the situation where the output of an activation function approaches

its extreme values (e.g., 0 or 1 for the sigmoid function, or -1 and 1 for the tanh function).

e When this happens, the gradient (the rate of change of the output with respect to the input)
becomes very small, especially for large or very negative inputs. This can lead to

vanishing/exploding gradients.

Sigmoid | Leaky RelLU

1 max(0.1z, x)
l4e—*

e Relu(2010):no saturation for
positive values, but no output ﬂ'[:ie‘.-') —
for negative values (dead
neurons).

e Leaky-RELU (2013): no
saturation for positive values, tanh
small slope for negative

Maxout
inputs. tﬂﬂh(.r)

max(wi x + by, wy = + bo)

e ELU (2015): expensive
version of RELU, but more
stable with Dying neurons.

ReLU | ELU
. T x>0
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Drop-out method (2014)

e Overfitting occurs when a deep neural network relies too heavily on specific neurons,
and gets very sensitive to their features.

e Dropout is a technique that randomly disables (or “drops”) a fraction of neurons during
each training iteration.

e |t forces the layers to take more or less responsibility for the input by taking a probabilistic
approach, as in every iteration the presence of a node is highly unreliable.

e This prevents the network from becoming too dependent on certain nodes and encourages it
to learn more generalized features, which helps it perform better on new data.

(b) After applying dropout.

2~ EIRDUE | 4
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Parameters vs Hyperparameters

Parameters

HyperParameters

e

Estimated during training with the training
data to minimize the loss function

The values define the model and are saved
with the model

Are learned from data.

PURDUE
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External configurations set before training
begins to control the learning process

Values are not part of the model, and not
saved with the model.

Not learned from the dataset, but tuned to
optimize performance.




Parameters vs Hyperparameters

Parameters HyperParameters

Weights: The connection strengths between neurons. Learning rate: Controls step size in weight updates.

Batch size: Number of samples processed before updating
parameters.

Number of epochs: Full passes over the training dataset.

Optimizer: Algorithm for updating parameters (e.g., Adam,
SGD).

Number of layers: Defines network depth.

Number of neurons per layer: Controls model capacity.

Biases: The offset values added to the weighted sum of inputs | Activation function: Defines neuron outputs (e.g., ReLU,
before applying an activation function. sigmoid).

Dropout rate: Probability of randomly disabling neurons
during training.

Weight initialization: Strategy for setting initial weights (e.g.,
Xavier, He).

Regularization strength: Controls overfitting (e.g., L2 weight

é -2 PURDUEv decay). 3
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