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1. History and Basics of DNN
a. From traditional ML to DNN

2. Fundamental deep learning: from discriminative to generative
a. CNN, RNN, Autoencoders, attention,

b. Deep learning for Representation Learning and feature extraction

c. Discriminative vs generative deep learning: VAE, GAN, Diffusion Models

3. Transformers Era
a. self-attention, encoders, decoders, masking,

b. Transformers for other modalities: text, image, video, speech,

4. LLMs in Practice
a. Prompt Engineering Methods: COT, TOT, Self-Consistency, RAG, Agents,

b. Fine-tuning Methods: instruct tuning, RLHF, Adapters like LORA,

5. Deep learning for different domains

6. AI safety and Governance

Course Outline
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1. History and Basics of DNN
a. AI hypes and winters

b. Deep learning from 1950s

c. From single neurons to deep networks

d. Deep learning challenges solved from 1950-present

i. Model overfitting

ii. Activation function saturation

iii. Vanishing/exploding gradient

e. Deep learning weaknesses

Course Outline-first session-March 5th 
2025
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Some Definitions
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Artificial intelligence (AI) is technology that enables computers and machines to simulate human

learning, comprehension, problem solving, decision making, creativity and autonomy:
Machine learning, rule-based, symbolic AI, planning, Genetic Algorithms & Evolutionary Computation

Machine learning is a pathway to artificial intelligence, which uses algorithms to automatically learn

insights and recognize patterns from data, make increasingly better decisions: supervised, unsupervised,

reinforcement learning

Deep learning is an advanced method of machine learning. Deep learning models use large neural

networks — networks that function like a human brain to logically analyze data — to learn complex

patterns and make predictions.



Will there be another AI winter? 
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Photo taken from [9]



The beginning of AI research & First AI winter
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Biological Neuron Structure 
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A drawing of a biological neuron (left) and its mathematical model (right)

photos from: https://cs231n.github.io/neural-networks-1/



If a misclassification occurs:

● If                            ,  it adds a fraction of xi to wi, pushing the decision boundary in the correct direction.

● If                              , it subtracts a fraction of xi from wi, moving in the opposite direction.

Perceptron Model (1958)
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Photo from: https://medium.com/@musicaround/11-what-is-a-linear-

classifier-logistic-regression-4eb44e2544b4



Perceptron weakness (1969)
First AI winter
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Minsky et al 1969 proved that single-layer Perceptrons cannot solve non-

linearly separable problems, such as the XOR function, which resulted in

first AI winter until discovery of backpropagation at 1980s.
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● Rosenblatt believed perceptrons could learn, recognize patterns,

and eventually lead to AI.

● Minsky & Papert (1969) proved that single-layer perceptrons

couldn’t solve non-linearly separable problems like XOR, limiting

their power.
● This led to a decline in neural network research until multi-layer

perceptrons and backpropagation (1986) revived deep learning.



Second AI winter
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● In his 1982 book, "The Society of Mind," Minsky warned that early

AI methods, including expert systems, were not as powerful or

general as their proponents claimed.

○ He believed AI would face difficulty in scaling and achieving

true intelligence due to overhyped expectations and the

limitations of current technologies.

● His prediction came true with the second AI winter in the late

1980s to early 1990s,

○ the limitations of expert systems and the slow progress in

neural networks led to a decline in funding and interest in AI

research during that period.



● Hype:
○ The technology wasn't advancing at the pace that was expected which led to the first significant

reduction in AI funding and interest (the first AI winter).

○ The cost of maintaining the systems and their inability to generalise beyond narrow fields led to

another collapse of interest ( the second AI winter).

● Economy and Funding Cuts:
○ General economic downturn leads to less investment in R&D and less optimism for new technology.

○ As projects failed to deliver on their promises, funding from both government and private sectors

began to dwindle.

■ For example, the U.S. government reduced funding for AI research in the 1970s after the initial

excitement waned.

● Lack of R & D pipeline
○ Funding cuts lead to lack of more fundamental research on hard AI problems.

○ Students are not interested in AI leading to a dearth of talent needed in the field.

Reasons for AI winters
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Year Contributor Contribution

300 BC Aristotle introduced Associationism, started the history of humans attempt to understand brain.

1873 Alexander Bain introduced Neural Groupings as the earliest models of neural network, inspired 
Hebbian Learning Rule.

1943 McCulloch & Pitts introduced MCP Model, which is considered as the ancestor of Artificial Neural Model

1949 Donald Hebb Considered as the father of neural networks, introduced Hebbian Learning Rule, which 
lays the foundation of modern neural network. 

1956 John McCarthy Together with Minsky held Dartmouth Conference named “Artificial Intelligence”.

1958 Frank Rosenblatt Introduced the first perceptron, which highly resembles modern perceptron. 

1969 Minsky & Papert They proved that single-layer perceptrons couldn’t solve non-linearly separable problems like 

XOR, limiting their power.

1974 Paul Werbos Introduced Backpropagation

1980 Kunihiko Fukushima Introduced Neocogitron, which inspired Convolutional Neural Network

1982 Minsky at "The Society of 

Mind"

Warned that early AI methods, including expert systems, were not as powerful or general as 

their proponents claimed.

Deep Learning History
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Year Contributor Contribution

1986 Michael I. Jordan Defined and introduced Recurrent Neural Network

Hinton & Rumelhart  Backpropagation for MLP: This solved Minsky & Papert’s critique that perceptrons were 
too limited.

1989 Yann Lecun Introduced CNNs for handwritten digit recognition

1997 Hochreiter & Schmidhuber Introduced LSTM, solved the problem of vanishing gradient in recurrent neural 

networks

1999 Nvidia Developed the world’s first GPU

2006 Geoffrey Hinton Introduced Deep Belief Networks, also introduced layer-wise pretraining technique, 

opened current deep learning era.

2006 Researchers started implementing deep learning models on GPUs. 

2012 Geoffrey Hinton Introduced Dropout, to avoid overfitting and improving generalization.

2017 The Transformer model replaced CNNs and RNNs in NLP tasks.

2020 Vision Transformers (ViTs) challenged CNN dominance in vision tasks.

Deep Learning History



● Before 2000 (no Big data, no Big machines, no effective training methods):

○ Initial popularity in the 1980s with the discovery of backpropagation

○ Suffered a decline in the 1990s due to their challenges and the rise of other methods like SVMs,

linear regression, logistic regression, and decision trees were often easier to implement and

required less computational and memory resources.

Neural Networks history 
Regarding big data and big machines

● Revival in the 2000s (big machines (GPUs), some training methods):

○ The early 2000s saw a renewed interest in neural networks, driven by improvements in

computational power, the advent of new algorithms for network training, availability of large

datasets, and successful applications in diverse domains. (RNN, CNN, Autoencoders)

● 2010 and later (optimization and learning algorithms, big data):

○ Breakthroughs in Deep Learning: new works demonstrated that with sufficient data and

computational resources, deep models could achieve state-of-the-art performance in many

complex tasks, leading to the modern deep learning revolution.



Deep Learning Before Big data 

with less data, and less computing power, there was no need to invest on deep 
networks. 
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Before Big 
data!



What is a Neuron?

Photo taken from [2]

Input: It is the set of features, For example,

the input in object detection can be an array

of pixel values pertaining to an image.

Weight : Its main function is to give

importance to those features that contribute

more towards the learning.

Bias: like as a constant in a linear function.

Transfer function: it combines multiple

inputs into one output value using a simple

summation of all the inputs.

Activation Function: It introduces non-

linearity in the working of perceptrons.

Without this, the output would just be a

linear combination of input values.



From Neuron to Deep Neural Network
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Deep Learning and Backpropagation 

A deep network has a huge parameter space, so that:

▪ Needs More training data

▪ Prone to overfitting and less generalizable

▪ Needs special initialization and optimization methods to avoid vanishing/exploding gradient

▪ Needs strong hardware for training and inference

Photo taken from [4]Photo taken from [3]



Neural Network

Photo taken from [1]



Are DNNs perfect? 
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Complexity and Non-linearity: The highly nonlinear nature of DNNs adds

significant complexity to the theoretical analysis.

Optimization: The loss functions in deep networks is complex and non-convex,

and while empirical results show that good minima can be found, a complete

theoretical understanding of why SGD works so well in this context is still

developing.

Expressiveness: It is known that neural networks can approximate any

continuous function given sufficient depth (number of layers) and width

(number of neurons per layer). However, a comprehensive theory capturing

all aspects of network architecture is still in progress.



Are DNNs perfect? 
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Interpretability: DNNs are often criticized for being black boxes that lack

interpretability. This can make it difficult to understand how the model is making

predictions and to identify any errors or biases in the model.

Data privacy and security concerns: As deep learning models often rely on

large amounts of data, there are concerns about data privacy and security.

● Misuse of data by malicious actors can lead to serious consequences like

identity theft, financial loss and invasion of privacy.



LLMs Risks

● Misinformation involves the spread of false or inaccurate information without malicious

intent of the user.

○ Hallucination refers to the generation of content that the model invents or fabricates.

● Disinformation is generating false information that is intended to mislead.

The relationships between hallucination, misinformation, 

disinformation, and related terms[5].



AI Safety, Ethics, and Governance
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The latest LLMs, GPT-4, mistakenly provides an irrelevant website link when citing a paper [4].



1. History and Basics of DNN
a. AI hypes and winters

b. Deep learning from 1950 to present

c. Deep learning weaknesses

d. From single neurons to deep networks

e. Deep learning challenges solved from 1950-present

i. Vanishing/exploding gradient

ii. Activation function saturation

iii. Model overfitting
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Batch vs stochastic 

Gradient Descent
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● Batch gradient descent computes gradients over the entire dataset, which 

is computationally expensive and slow.

● Stochastic Gradient Descent (SGD) updates model weights using small 

random subsets (mini-batches) of data, significantly speeding up learning.

○ Finding optimal batch size 1<M<N will yield the fastest learning.



● Avoiding Local Minima & Improve Generalization

○ Unlike full-batch gradient descent, which can get stuck in local minima, SGD’s

randomness helps explore a broader solution space.

○ This leads to better generalization and prevents overfitting, which is crucial for deep

models.

● Enabled Deep Neural Networks (DNNs) to Scale and speed

○ Despite SGD, Gradient descent calculates gradient over the entire dataset, which is

computationally expensive and slow.

● Made Real-Time and Online Learning Possible

○ Since SGD updates weights incrementally, models can learn continuously from data
streams rather than requiring complete datasets upfront.

● Inspired Advanced Optimizers for Faster Convergence

○ Variants like Adam, RMSprop, and AdaGrad improved upon SGD, adapting learning

rates dynamically for faster convergence.

Stochastic Gradient Descent Role in Deep 
Learning Revolution (1951-2018)

28



Stochastic Gradient Descent (1951-2018)

Learning Rate

photo from: https://www.jeremyjordan.me/nn-learning-rate/
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Vanishing/Exploding Gradient

30

In 1990s, The Vanishing/Exploding Gradient Problem appeared:

● It was discovered “features” (lessons) formed in later layers were not being learned by the 
earlier layers, because no learning signal reached these layers.

Photo from; https://medium.com/dscier/how-to-deal-with-vanishing-and-

exploding-gradients-in-neural-networks-24eb00c80e84



Vanishing/Exploding Gradient 
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Problem Cause Description

Vanishing Gradient Saturated Activation Functions Functions like sigmoid and tanh

have small gradients in extreme
regions (near 0 or 1).

Vanishing/Exploding 

Gradient
Poor Weight Initialization Small initial weights cause small

activations, leading to small
gradients.

vanishing/Exploding 

Gradient
Lack of Proper Normalization (e.g., batch 

norm)

Without normalization, activations

can get very small/large.

Exploding Gradient High Learning Rate A high learning rate can cause large

weight updates, leading to instability.



Vanishing/Exploding Gradient solutions
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Method Authors Info

Layer-by-Layer Pretraining-

2006

Geoffrey Hinton & Yoshua Bengio deep autoencoders using stacked

autoencoders for pretraining and

initialization.

weight initialization-2010 & 

2015

Xavier & He Proper weight initialization prevents gradients

from becoming too small or too large at the

start of training.

ReLU Activation Function -

2011

Xavier Glorot & Yoshua Bengio ReLU (Rectified Linear Unit) avoids

vanishing gradients by not saturating like

sigmoid/tanh. It keeps gradients stable for

deep networks. However, it introduced the

dying ReLU problem, where neurons could

become inactive.

Batch Normalization - 2015 Sergey Ioffe & Christian Szegedy Normalizes activations in deep networks,

reducing internal covariate shift and improving

gradient flow.

Residual Connections 

(ResNets) - 2015

Kaiming He et al. Shortcut connections allow gradients to

skip layers, preventing them from vanishing in

very deep networks (e.g., ResNet-50,

ResNet-101).



● Saturation: Saturation refers to the situation where the output of an activation function approaches

its extreme values (e.g., 0 or 1 for the sigmoid function, or -1 and 1 for the tanh function).

● When this happens, the gradient (the rate of change of the output with respect to the input)

becomes very small, especially for large or very negative inputs. This can lead to

vanishing/exploding gradients.

Activation Functions (1950-2018) 
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● Relu(2010):no saturation for
positive values, but no output
for negative values (dead
neurons).

● Leaky-RELU (2013): no
saturation for positive values,
small slope for negative
inputs.

● ELU (2015): expensive
version of RELU, but more
stable with Dying neurons.



Overfitting solutions
● Overfitting occurs when a deep neural network relies too heavily on specific neurons,

and gets very sensitive to their features.

● Dropout is a technique that randomly disables (or “drops”) a fraction of neurons during
each training iteration.

● It forces the layers to take more or less responsibility for the input by taking a probabilistic
approach, as in every iteration the presence of a node is highly unreliable.

● This prevents the network from becoming too dependent on certain nodes and encourages it
to learn more generalized features, which helps it perform better on new data.

Drop-out method (2014)

34
Image from Dropout paper by Nitish et al. 
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Parameters HyperParameters

Estimated during training with the training 

data to minimize the loss function

External configurations set before training 

begins to control the learning process

The values define the model and are saved 

with the model

Values are not part of the model, and not 

saved with the model.

Are learned from data. Not learned from the dataset, but tuned to 

optimize performance.

Parameters vs Hyperparameters
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Parameters HyperParameters

Weights: The connection strengths between neurons. Learning rate: Controls step size in weight updates.

Batch size: Number of samples processed before updating 

parameters.

Number of epochs: Full passes over the training dataset.

Optimizer: Algorithm for updating parameters (e.g., Adam, 

SGD).

Number of layers: Defines network depth.

Number of neurons per layer: Controls model capacity.

Biases: The offset values added to the weighted sum of inputs 

before applying an activation function.

Activation function: Defines neuron outputs (e.g., ReLU, 

sigmoid).

Dropout rate: Probability of randomly disabling neurons 

during training.

Weight initialization: Strategy for setting initial weights (e.g., 

Xavier, He).

Regularization strength: Controls overfitting (e.g., L2 weight 

decay).

Parameters vs Hyperparameters
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